2 research outputs found

    Foreign Object Detection and Quantification of Fat Content Using A Novel Multiplexing Electric Field Sensor

    Full text link
    There is an ever growing need to ensure the quality of food and assess specific quality parameters in all the links of the food chain, ranging from processing, distribution and retail to preparing food. Various imaging and sensing technologies, including X-ray imaging, ultrasound, and near infrared reflectance spectroscopy have been applied to the problem. Cost and other constraints restrict the application of some of these technologies. In this study we test a novel Multiplexing Electric Field Sensor (MEFS), an approach that allows for a completely non-invasive and non-destructive testing approach. Our experiments demonstrate the reliable detection of certain foreign objects and provide evidence that this sensor technology has the capability of measuring fat content in minced meat. Given the fact that this technology can already be deployed at very low cost, low maintenance and in various different form factors, we conclude that this type of MEFS is an extremely promising technology for addressing specific food quality issues

    A comparison of passive and active dust sampling methods for measuring airborne methicillin-resistant Staphylococcus aureus in pig farms

    Get PDF
    Methicillin-resistant strains of Staphylococcus aureus (MRSA) are resistant to most β-lactam antibiotics. Pigs are an important reservoir of livestock-associated MRSA (LA-MRSA), which is genetically distinct from both hospital and community-acquired MRSA. Occupational exposure to pigs on farms can lead to LA-MRSA carriage by workers. There is a growing body of research on MRSA found in the farm environment, the airborne route of transmission, and its implication on human health. This study aims to directly compare two sampling methods used to measure airborne MRSA in the farm environment; passive dust sampling with electrostatic dust fall collectors (EDCs), and active inhalable dust sampling using stationary air pumps with Gesamtstaubprobenahme (GSP) sampling heads containing Teflon filters. Paired dust samples using EDCs and GSP samplers, totaling 87 samples, were taken from 7 Dutch pig farms, in multiple compartments housing pigs of varying ages. Total nucleic acids of both types of dust samples were extracted and targets indicating MRSA (femA, nuc, mecA) and total bacterial count (16S rRNA) were quantified using quantitative real-time PCRs. MRSA could be measured from all GSP samples and in 94% of the EDCs, additionally MRSA was present on every farm sampled. There was a strong positive relationship between the paired MRSA levels found in EDCs and those measured on filters (Normalized by 16S rRNA; Pearson's correlation coefficient r = 0.94, Not Normalized; Pearson's correlation coefficient r = 0.84). This study suggests that EDCs can be used as an affordable and easily standardized method for quantifying airborne MRSA levels in the pig farm setting
    corecore